This is an unofficial PyTorch implementation by Ignacio Oguiza - oguiza@gmail.com based on:
from tsai.models.utils import count_parameters
from tsai.models.RNN_FCN import *
bs = 16
n_vars = 3
seq_len = 12
c_out = 2
xb = torch.rand(bs, n_vars, seq_len)
test_eq(RNN_FCNPlus(n_vars, c_out, seq_len)(xb).shape, [bs, c_out])
test_eq(LSTM_FCNPlus(n_vars, c_out, seq_len)(xb).shape, [bs, c_out])
test_eq(MLSTM_FCNPlus(n_vars, c_out, seq_len)(xb).shape, [bs, c_out])
test_eq(GRU_FCNPlus(n_vars, c_out, shuffle=False)(xb).shape, [bs, c_out])
test_eq(GRU_FCNPlus(n_vars, c_out, seq_len, shuffle=False)(xb).shape, [bs, c_out])
test_eq(count_parameters(LSTM_FCNPlus(n_vars, c_out, seq_len)), count_parameters(LSTM_FCN(n_vars, c_out, seq_len)))
LSTM_FCNPlus(n_vars, seq_len, c_out, se=8)