This is an unofficial PyTorch implementation by Ignacio Oguiza - oguiza@gmail.com based on:
class
InceptionModule
[source]
InceptionModule
(ni
,nf
,ks
=40
,bottleneck
=True
) ::Module
Same as nn.Module
, but no need for subclasses to call super().__init__
class
InceptionBlock
[source]
InceptionBlock
(ni
,nf
=32
,residual
=True
,depth
=6
,ks
=40
,bottleneck
=True
) ::Module
Same as nn.Module
, but no need for subclasses to call super().__init__
class
InceptionTime
[source]
InceptionTime
(c_in
,c_out
,nf
=32
,nb_filters
=None
,ks
=40
,bottleneck
=True
) ::Module
Same as nn.Module
, but no need for subclasses to call super().__init__
bs = 16
vars = 1
seq_len = 12
c_out = 2
xb = torch.rand(bs, vars, seq_len)
test_eq(InceptionTime(vars,c_out)(xb).shape, [bs, c_out])
test_eq(InceptionTime(vars,c_out, bottleneck=False)(xb).shape, [bs, c_out])
test_eq(InceptionTime(vars,c_out, residual=False)(xb).shape, [bs, c_out])
test_eq(total_params(InceptionTime(3, 2))[0], 455490)
InceptionTime(3,2)
InceptionTime( (inceptionblock): InceptionBlock( (inception): ModuleList( (0): InceptionModule( (bottleneck): Conv1d(3, 32, kernel_size=(1,), stride=(1,), bias=False) (convs): ModuleList( (0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False) (1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False) (2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False) ) (maxconvpool): Sequential( (0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv1d(3, 32, kernel_size=(1,), stride=(1,), bias=False) ) (concat): Concat(dim=1) (bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): ReLU() ) (1): InceptionModule( (bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) (convs): ModuleList( (0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False) (1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False) (2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False) ) (maxconvpool): Sequential( (0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) ) (concat): Concat(dim=1) (bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): ReLU() ) (2): InceptionModule( (bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) (convs): ModuleList( (0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False) (1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False) (2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False) ) (maxconvpool): Sequential( (0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) ) (concat): Concat(dim=1) (bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): ReLU() ) (3): InceptionModule( (bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) (convs): ModuleList( (0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False) (1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False) (2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False) ) (maxconvpool): Sequential( (0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) ) (concat): Concat(dim=1) (bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): ReLU() ) (4): InceptionModule( (bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) (convs): ModuleList( (0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False) (1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False) (2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False) ) (maxconvpool): Sequential( (0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) ) (concat): Concat(dim=1) (bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): ReLU() ) (5): InceptionModule( (bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) (convs): ModuleList( (0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False) (1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False) (2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False) ) (maxconvpool): Sequential( (0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False) ) (concat): Concat(dim=1) (bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): ReLU() ) ) (shortcut): ModuleList( (0): ConvBlock( (0): Conv1d(3, 128, kernel_size=(1,), stride=(1,), bias=False) (1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (add): Add (act): ReLU() ) (gap): GAP1d( (gap): AdaptiveAvgPool1d(output_size=1) (flatten): Flatten(full=False) ) (fc): Linear(in_features=128, out_features=2, bias=True) )