This contains metrics not included in fastai.
All metrics applicable to multi classification have been created by Doug Williams (https://github.com/williamsdoug). Thanks a lot Doug!!
MatthewsCorrCoefBinary[source]
MatthewsCorrCoefBinary(sample_weight=None)
Matthews correlation coefficient for single-label classification problems
get_task_metrics[source]
get_task_metrics(dls,binary_metrics=None,multi_class_metrics=None,regression_metrics=None,verbose=True)
All metrics applicable to multi classification have been created by Doug Williams (https://github.com/williamsdoug). Thanks a lot Doug!!
accuracy_multi[source]
accuracy_multi(inp,targ,thresh=0.5,sigmoid=True)
Compute accuracy when inp and targ are the same size.
metrics_multi_common[source]
metrics_multi_common(inp,targ,thresh=0.5,sigmoid=True,by_sample=False)
Computes TP, TN, FP, FN when inp and targ are the same size.
precision_multi[source]
precision_multi(inp,targ,thresh=0.5,sigmoid=True)
Computes precision when inp and targ are the same size.
recall_multi[source]
recall_multi(inp,targ,thresh=0.5,sigmoid=True)
Computes recall when inp and targ are the same size.
specificity_multi[source]
specificity_multi(inp,targ,thresh=0.5,sigmoid=True)
Computes specificity (true negative rate) when inp and targ are the same size.
balanced_accuracy_multi[source]
balanced_accuracy_multi(inp,targ,thresh=0.5,sigmoid=True)
Computes balanced accuracy when inp and targ are the same size.
Fbeta_multi[source]
Fbeta_multi(inp,targ,beta=1.0,thresh=0.5,sigmoid=True)
Computes Fbeta when inp and targ are the same size.
F1_multi[source]
F1_multi(*args, **kwargs)