Functions used to transform time series into a dataframe that can be used to create tabular dataloaders.

In this case we are using tsfresh that is one of the most widely known libraries used to create features from time series. You can get more details about this library here: https://tsfresh.readthedocs.io/en/latest/

get_ts_features[source]

get_ts_features(X:Union[ndarray, Tensor], y:Union[NoneType, ndarray, Tensor]=None, features:Union[str, dict]='min', n_jobs:Optional[int]=None)

Args: X: np.array or torch.Tesnor of shape [samples, dimensions, timesteps]. y: Not required for unlabeled data. Otherwise, you need to pass it. features: 'min', 'efficient', 'all', or a dictionary. Be aware that 'efficient' and 'all' may required substantial memory and time.

dsid = 'NATOPS'
X, y, splits = get_UCR_data(dsid, return_split=False)
X.shape
(360, 24, 51)

There are 3 levels of fatures you can extract: 'min', 'efficient' and 'all'. I'd encourage you to start with min as feature creation may take a long time.

In addition to this, you can pass a dictionary to build the desired features (see tsfresh documentation in the link above).

ts_features_df = get_ts_features(X, y)
ts_features_df.shape
Feature Extraction: 100%|██████████| 40/40 [00:03<00:00, 10.43it/s]
(360, 193)

The 'min' set creates a dataframe with 8 features per channel + 1 per target (total 193) for each time series sample (360).

cont_names = ts_features_df.columns[:-1]
y_names = 'target'
dls = get_tabular_dls(ts_features_df, splits=splits, cont_names=cont_names, y_names=y_names)
dls.show_batch()
0__sum_values 0__median 0__mean 0__length 0__standard_deviation 0__variance 0__maximum 0__minimum 1__sum_values 1__median 1__mean 1__length 1__standard_deviation 1__variance 1__maximum 1__minimum 2__sum_values 2__median 2__mean 2__length 2__standard_deviation 2__variance 2__maximum 2__minimum 3__sum_values 3__median 3__mean 3__length 3__standard_deviation 3__variance 3__maximum 3__minimum 4__sum_values 4__median 4__mean 4__length 4__standard_deviation 4__variance 4__maximum 4__minimum 5__sum_values 5__median 5__mean 5__length 5__standard_deviation 5__variance 5__maximum 5__minimum 6__sum_values 6__median 6__mean 6__length 6__standard_deviation 6__variance 6__maximum 6__minimum 7__sum_values 7__median 7__mean 7__length 7__standard_deviation 7__variance 7__maximum 7__minimum 8__sum_values 8__median 8__mean 8__length 8__standard_deviation 8__variance 8__maximum 8__minimum 9__sum_values 9__median 9__mean 9__length 9__standard_deviation 9__variance 9__maximum 9__minimum 10__sum_values 10__median 10__mean 10__length 10__standard_deviation 10__variance 10__maximum 10__minimum 11__sum_values 11__median 11__mean 11__length 11__standard_deviation 11__variance 11__maximum 11__minimum 12__sum_values 12__median 12__mean 12__length 12__standard_deviation 12__variance 12__maximum 12__minimum 13__sum_values 13__median 13__mean 13__length 13__standard_deviation 13__variance 13__maximum 13__minimum 14__sum_values 14__median 14__mean 14__length 14__standard_deviation 14__variance 14__maximum 14__minimum 15__sum_values 15__median 15__mean 15__length 15__standard_deviation 15__variance 15__maximum 15__minimum 16__sum_values 16__median 16__mean 16__length 16__standard_deviation 16__variance 16__maximum 16__minimum 17__sum_values 17__median 17__mean 17__length 17__standard_deviation 17__variance 17__maximum 17__minimum 18__sum_values 18__median 18__mean 18__length 18__standard_deviation 18__variance 18__maximum 18__minimum 19__sum_values 19__median 19__mean 19__length 19__standard_deviation 19__variance 19__maximum 19__minimum 20__sum_values 20__median 20__mean 20__length 20__standard_deviation 20__variance 20__maximum 20__minimum 21__sum_values 21__median 21__mean 21__length 21__standard_deviation 21__variance 21__maximum 21__minimum 22__sum_values 22__median 22__mean 22__length 22__standard_deviation 22__variance 22__maximum 22__minimum 23__sum_values 23__median 23__mean 23__length 23__standard_deviation 23__variance 23__maximum 23__minimum target
0 -31.687590 -0.449933 -0.621325 51.0 1.131348 1.279949 1.736834 -2.283808 -16.302590 -0.006616 -0.319659 51.0 1.013854 1.027900 0.882160 -2.065694 -61.100647 -1.349777 -1.198052 51.0 0.568826 0.323564 -0.016052 -1.992497 51.926018 0.842558 1.018157 51.0 0.951547 0.905441 2.367542 -0.546820 -42.782078 -0.791868 -0.838864 51.0 0.893807 0.798892 0.423345 -2.377712 3.175629 -0.184566 0.062267 51.0 0.989049 0.978218 1.566781 -1.496043 -41.555508 -0.725470 -0.814814 51.0 0.294545 0.086757 -0.329041 -1.266218 -22.076424 -0.679716 -0.432871 51.0 0.444817 0.197862 0.220083 -1.348709 -34.127652 -0.693618 -0.669170 51.0 0.159478 0.025433 -0.327424 -1.065561 42.054775 0.859676 0.824603 51.0 0.210473 0.044299 1.589184 0.574062 -36.303024 -0.757318 -0.711824 51.0 0.358840 0.128766 -0.210639 -1.655061 20.224211 0.330459 0.396553 51.0 0.265177 0.070319 0.765451 -0.176420 -33.866142 -0.602986 -0.664042 51.0 0.847634 0.718483 1.148847 -1.766993 -16.736234 -0.200915 -0.328161 51.0 0.758470 0.575276 0.647467 -1.550873 -53.966419 -1.090789 -1.058165 51.0 0.298422 0.089056 -0.241720 -1.626734 46.019440 0.752719 0.902342 51.0 0.637167 0.405982 1.743538 -0.238214 -39.030647 -0.623139 -0.765307 51.0 0.677121 0.458493 0.133827 -1.924617 6.346338 -0.071636 0.124438 51.0 0.767484 0.589032 1.147075 -1.334729 -34.825542 -0.449683 -0.682854 51.0 0.963484 0.928301 1.143906 -2.074954 -13.005811 -0.033904 -0.255016 51.0 0.915946 0.838957 0.793895 -1.785950 -58.590382 -1.264853 -1.148831 51.0 0.441024 0.194502 0.006054 -1.804485 48.292000 0.808016 0.946902 51.0 0.858373 0.736804 2.098662 -0.508780 -36.319584 -0.467445 -0.712149 51.0 0.832555 0.693147 0.375481 -2.291797 4.425817 -0.131826 0.086781 51.0 0.853803 0.728979 1.382302 -1.181882 5.0
1 -24.011181 -0.463308 -0.470807 51.0 0.022327 0.000499 -0.430550 -0.519750 -97.602141 -1.932483 -1.913768 51.0 0.065244 0.004257 -1.744846 -2.022548 -40.876679 -0.822114 -0.801503 51.0 0.037470 0.001404 -0.739014 -0.852205 58.312725 0.890756 1.143387 51.0 0.625533 0.391292 2.287177 0.488941 -24.820274 -1.291028 -0.486672 51.0 1.539181 2.369080 1.607593 -2.030625 -23.528324 -0.470723 -0.461340 51.0 0.340889 0.116205 0.025836 -0.867550 -29.485134 -0.580218 -0.578140 51.0 0.010866 0.000118 -0.557524 -0.598073 -39.278442 -0.783769 -0.770166 51.0 0.037736 0.001424 -0.710738 -0.828738 -9.966043 -0.219775 -0.195413 51.0 0.053768 0.002891 -0.125779 -0.268663 39.935242 0.751462 0.783044 51.0 0.217438 0.047279 1.164140 0.542353 -12.488910 -0.582633 -0.244881 51.0 0.651232 0.424103 0.718757 -0.883951 -10.751954 -0.203955 -0.210823 51.0 0.109824 0.012061 -0.033436 -0.347595 -27.786322 -0.539891 -0.544830 51.0 0.017510 0.000307 -0.508702 -0.577425 -75.600090 -1.486838 -1.482355 51.0 0.063190 0.003993 -1.327342 -1.596648 -30.532627 -0.613594 -0.598679 51.0 0.045950 0.002111 -0.509880 -0.664597 51.931954 0.871081 1.018274 51.0 0.424618 0.180301 1.827167 0.569429 -18.751158 -0.944382 -0.367670 51.0 1.195926 1.430238 1.347136 -1.549184 -20.509649 -0.400428 -0.402150 51.0 0.233003 0.054291 -0.103234 -0.706466 -30.697359 -0.596296 -0.601909 51.0 0.019827 0.000393 -0.570799 -0.636124 -87.481331 -1.717072 -1.715320 51.0 0.065076 0.004235 -1.576493 -1.851188 -33.553829 -0.659760 -0.657918 51.0 0.072796 0.005299 -0.550007 -0.793064 54.696705 0.877398 1.072484 51.0 0.548211 0.300535 2.050468 0.381210 -21.277276 -1.030952 -0.417201 51.0 1.346573 1.813258 1.466641 -1.913035 -25.165306 -0.649369 -0.493437 51.0 0.331068 0.109606 -0.022846 -0.904735 1.0
2 -29.636921 -0.573012 -0.581116 51.0 0.019839 0.000394 -0.562071 -0.638035 -89.379762 -1.754199 -1.752544 51.0 0.034682 0.001203 -1.695036 -1.794399 -31.525926 -0.618192 -0.618155 51.0 0.019983 0.000399 -0.585535 -0.646959 52.735165 0.866712 1.034023 51.0 0.479992 0.230392 2.004829 0.571202 -32.593689 -1.377992 -0.639092 51.0 1.270902 1.615192 1.225264 -1.825619 -29.333990 -0.617215 -0.575176 51.0 0.246258 0.060643 -0.081632 -0.969561 -31.207949 -0.609448 -0.611921 51.0 0.007926 0.000063 -0.604111 -0.635759 -36.385547 -0.706627 -0.713442 51.0 0.017265 0.000298 -0.683182 -0.734319 -4.532246 -0.089797 -0.088868 51.0 0.004149 0.000017 -0.074800 -0.094186 43.812447 0.830219 0.859068 51.0 0.251514 0.063259 1.214150 0.596921 -24.633379 -0.654848 -0.483007 51.0 0.329551 0.108604 0.058672 -0.776904 -2.887452 -0.064124 -0.056617 51.0 0.017578 0.000309 -0.026005 -0.100879 -34.023640 -0.664266 -0.667130 51.0 0.014798 0.000219 -0.650468 -0.712312 -66.068222 -1.295266 -1.295455 51.0 0.029608 0.000877 -1.254792 -1.402467 -19.930524 -0.387555 -0.390795 51.0 0.025839 0.000668 -0.323750 -0.458687 51.761165 1.014252 1.014925 51.0 0.343023 0.117665 1.680628 0.653975 -28.954203 -1.036182 -0.567729 51.0 0.866887 0.751493 0.714727 -1.390011 -17.876280 -0.401144 -0.350515 51.0 0.131877 0.017391 -0.078505 -0.549548 -36.563061 -0.713853 -0.716923 51.0 0.012922 0.000167 -0.696873 -0.750091 -76.812027 -1.513128 -1.506118 51.0 0.027557 0.000759 -1.450089 -1.551815 -23.915725 -0.468774 -0.468936 51.0 0.018951 0.000359 -0.433935 -0.506069 46.672813 0.790502 0.915153 51.0 0.438349 0.192150 1.779223 0.468808 -29.423805 -1.152751 -0.576937 51.0 1.048190 1.098701 0.963911 -1.638763 -30.259670 -0.652242 -0.593327 51.0 0.208057 0.043288 -0.156107 -0.881726 1.0
3 -25.047110 -0.469976 -0.491120 51.0 1.039325 1.080197 1.277576 -2.058804 -27.482972 0.052630 -0.538882 51.0 1.092142 1.192774 0.847924 -2.296996 -59.228195 -1.158052 -1.161337 51.0 0.577929 0.334002 0.125093 -1.880435 47.830925 0.781728 0.937861 51.0 1.001210 1.002422 2.316732 -0.775241 -44.241653 -0.416005 -0.867483 51.0 1.020474 1.041367 0.490420 -2.644791 1.352823 -0.140039 0.026526 51.0 0.645263 0.416364 1.190540 -0.959072 -35.933167 -0.697214 -0.704572 51.0 0.347193 0.120543 -0.034316 -1.154175 -25.223339 -0.645148 -0.494575 51.0 0.358822 0.128754 0.050433 -0.876566 -37.310913 -0.828076 -0.731587 51.0 0.191002 0.036482 -0.459349 -1.033536 44.102791 0.893525 0.864761 51.0 0.195794 0.038335 1.276629 0.602641 -41.254436 -0.945527 -0.808911 51.0 0.334384 0.111812 -0.289740 -1.265870 16.481028 0.273628 0.323157 51.0 0.175884 0.030935 0.575722 0.030430 -26.781509 -0.601354 -0.525128 51.0 0.842071 0.709084 0.937225 -1.677820 -23.497918 -0.104672 -0.460744 51.0 0.792314 0.627761 0.495796 -1.714955 -53.039357 -1.034547 -1.039987 51.0 0.321692 0.103486 -0.422473 -1.492176 44.988911 0.764692 0.882135 51.0 0.652326 0.425529 1.773704 -0.289913 -42.777878 -0.566373 -0.838782 51.0 0.736869 0.542975 0.090714 -2.217362 -0.450630 -0.011670 -0.008836 51.0 0.611221 0.373591 0.899674 -1.086155 -23.856543 -0.429491 -0.467775 51.0 0.940447 0.884441 1.246905 -1.898433 -22.166147 -0.083299 -0.434630 51.0 0.971415 0.943647 0.817574 -1.969373 -58.418483 -1.192878 -1.145460 51.0 0.435533 0.189689 -0.313104 -1.728791 50.293598 0.794829 0.986149 51.0 0.746310 0.556978 2.143597 -0.172461 -38.037960 -0.281492 -0.745842 51.0 0.886904 0.786598 0.367451 -2.336047 0.735820 -0.181307 0.014428 51.0 0.599972 0.359967 1.134387 -0.852797 4.0
4 -41.201576 -0.608070 -0.807874 51.0 0.889726 0.791613 0.725645 -2.195617 -23.629126 -0.085047 -0.463316 51.0 1.018654 1.037656 1.068211 -1.795286 -21.292732 -0.389128 -0.417505 51.0 0.400357 0.160286 0.249956 -1.447868 38.498398 0.440613 0.754871 51.0 0.808717 0.654023 2.245723 -0.438493 -23.457401 -0.023015 -0.459949 51.0 1.054098 1.111123 1.131552 -1.833448 -31.360987 -0.646476 -0.614921 51.0 0.340407 0.115877 -0.082861 -1.529216 -40.306332 -0.739632 -0.790320 51.0 0.230506 0.053133 -0.352509 -1.184206 -17.231264 -0.299905 -0.337868 51.0 0.347758 0.120935 0.503786 -0.782599 -4.869106 0.016422 -0.095473 51.0 0.267548 0.071582 0.260650 -0.658415 37.220966 0.643430 0.729823 51.0 0.281067 0.078999 1.205101 0.321586 -24.338264 -0.670313 -0.477221 51.0 0.335451 0.112527 0.104471 -0.803964 -21.408007 -0.335360 -0.419765 51.0 0.226118 0.051130 -0.075735 -0.844365 -41.397484 -0.662061 -0.811715 51.0 0.655220 0.429313 0.548439 -1.776663 -20.873059 -0.113856 -0.409276 51.0 0.729906 0.532763 0.857338 -1.408824 -16.444862 -0.282158 -0.322448 51.0 0.352216 0.124056 0.251888 -1.069958 37.894848 0.584005 0.743036 51.0 0.630277 0.397249 1.795148 -0.144278 -20.929989 -0.043612 -0.410392 51.0 0.724184 0.524443 0.697051 -1.370825 -28.255297 -0.558395 -0.554025 51.0 0.242117 0.058620 -0.055325 -1.180921 -39.820022 -0.545180 -0.780785 51.0 0.775871 0.601976 0.629833 -1.975986 -20.506063 -0.086851 -0.402080 51.0 0.824082 0.679111 0.906945 -1.510986 -18.606042 -0.438775 -0.364824 51.0 0.404515 0.163632 0.431112 -1.247529 35.120491 0.361010 0.688637 51.0 0.792433 0.627950 2.130472 -0.434877 -22.394552 -0.122457 -0.439109 51.0 0.852059 0.726005 0.838727 -1.533409 -33.628571 -0.686534 -0.659384 51.0 0.268276 0.071972 -0.119453 -1.341451 5.0
5 -24.823248 -0.477101 -0.486730 51.0 0.036861 0.001359 -0.402602 -0.539456 -98.234352 -1.835871 -1.926164 51.0 0.188396 0.035493 -1.700439 -2.180160 -53.555866 -1.050411 -1.050115 51.0 0.051149 0.002616 -0.966048 -1.116951 59.429630 1.212786 1.165287 51.0 0.602850 0.363428 2.092470 0.392353 -65.917328 -1.942046 -1.292497 51.0 1.115073 1.243388 0.652547 -2.357580 6.232958 0.022522 0.122215 51.0 0.456835 0.208698 0.893114 -0.377309 -35.642277 -0.690219 -0.698868 51.0 0.043748 0.001914 -0.619525 -0.756708 -40.159771 -0.739370 -0.787446 51.0 0.072142 0.005204 -0.700199 -0.913578 -26.857824 -0.533884 -0.526624 51.0 0.027091 0.000734 -0.478079 -0.566838 35.622574 0.654334 0.698482 51.0 0.172152 0.029636 0.987900 0.493199 -30.764698 -0.944417 -0.603229 51.0 0.509118 0.259201 0.251938 -1.086303 18.843518 0.335765 0.369481 51.0 0.186673 0.034847 0.677908 0.132334 -30.103149 -0.581161 -0.590258 51.0 0.035138 0.001235 -0.524841 -0.637219 -78.376451 -1.489799 -1.536793 51.0 0.176593 0.031185 -1.311442 -1.770294 -45.693409 -0.910518 -0.895949 51.0 0.040035 0.001603 -0.818448 -0.937067 50.819454 0.965418 0.996460 51.0 0.413543 0.171018 1.643847 0.482386 -53.046330 -1.568685 -1.040124 51.0 0.912747 0.833107 0.495775 -1.925183 12.238467 0.217083 0.239970 51.0 0.390782 0.152710 0.862907 -0.180789 -30.803093 -0.600533 -0.603982 51.0 0.045415 0.002063 -0.502313 -0.678477 -90.878960 -1.722590 -1.781940 51.0 0.156182 0.024393 -1.552939 -2.028900 -54.484894 -1.060069 -1.068331 51.0 0.057381 0.003293 -0.920982 -1.157738 53.226456 1.024801 1.043656 51.0 0.600072 0.360086 1.967641 0.370038 -62.520919 -1.807466 -1.225900 51.0 0.955443 0.912871 0.461566 -2.194059 3.950203 -0.022342 0.077455 51.0 0.487613 0.237767 0.832024 -0.476938 3.0
6 -27.848024 -0.538649 -0.546040 51.0 0.015033 0.000226 -0.522586 -0.570220 -95.294815 -1.893335 -1.868526 51.0 0.043781 0.001917 -1.780694 -1.924438 -36.981468 -0.727544 -0.725127 51.0 0.020072 0.000403 -0.686548 -0.754100 55.414669 0.806179 1.086562 51.0 0.654030 0.427755 2.262416 0.445696 -29.805776 -1.477438 -0.584427 51.0 1.434080 2.056585 1.527065 -1.968565 -24.468878 -0.628565 -0.479782 51.0 0.305268 0.093189 -0.005088 -0.908052 -35.164513 -0.692197 -0.689500 51.0 0.009485 0.000090 -0.673945 -0.705548 -38.067444 -0.746727 -0.746420 51.0 0.009586 0.000092 -0.727163 -0.767835 -11.635359 -0.225926 -0.228144 51.0 0.007739 0.000060 -0.218580 -0.248116 44.761055 0.822936 0.877668 51.0 0.216912 0.047051 1.240380 0.648004 -20.868835 -0.760081 -0.409193 51.0 0.476509 0.227060 0.348744 -0.813243 -5.508397 -0.085385 -0.108008 51.0 0.079066 0.006251 0.009747 -0.225309 -32.452461 -0.634017 -0.636323 51.0 0.015947 0.000254 -0.616828 -0.663031 -75.819839 -1.505544 -1.486663 51.0 0.032703 0.001070 -1.427568 -1.529979 -29.806185 -0.585979 -0.584435 51.0 0.006767 0.000046 -0.570106 -0.595026 51.620747 0.885039 1.012172 51.0 0.422080 0.178151 1.823669 0.575215 -27.436798 -1.176618 -0.537976 51.0 1.026407 1.053511 1.058236 -1.525770 -17.655451 -0.339583 -0.346185 51.0 0.193007 0.037252 -0.079380 -0.592352 -37.255925 -0.723211 -0.730508 51.0 0.019915 0.000397 -0.703212 -0.762753 -85.168221 -1.690704 -1.669965 51.0 0.040836 0.001668 -1.589246 -1.744377 -31.423119 -0.622018 -0.616140 51.0 0.017410 0.000303 -0.575975 -0.642287 52.871548 0.781574 1.036697 51.0 0.495497 0.245518 1.933541 0.409018 -27.850479 -1.203557 -0.546088 51.0 1.228680 1.509654 1.249242 -1.753250 -24.339149 -0.652606 -0.477238 51.0 0.285133 0.081301 -0.007081 -0.831571 1.0
7 -33.276344 -0.479505 -0.652477 51.0 0.869560 0.756135 0.849287 -2.133169 -37.855068 -0.419435 -0.742256 51.0 0.956894 0.915645 0.624985 -2.005778 -43.155506 -0.750605 -0.846186 51.0 0.346998 0.120408 -0.250388 -1.688274 35.110122 0.468405 0.688434 51.0 0.908347 0.825095 2.131079 -0.782841 -41.891838 -0.555969 -0.821409 51.0 0.994760 0.989548 0.625232 -2.032552 -27.041738 -0.717695 -0.530230 51.0 0.598307 0.357971 0.693191 -1.669508 -37.228020 -0.596140 -0.729961 51.0 0.247121 0.061069 -0.333970 -1.222549 -25.548452 -0.601536 -0.500950 51.0 0.315148 0.099318 0.093430 -0.851777 -15.347136 -0.237232 -0.300924 51.0 0.165886 0.027518 -0.121151 -0.765126 37.993805 0.641868 0.744977 51.0 0.227982 0.051976 1.154039 0.446156 -31.068548 -0.808422 -0.609187 51.0 0.312671 0.097763 0.060170 -0.877740 -10.810991 -0.308081 -0.211980 51.0 0.275323 0.075803 0.265465 -0.566001 -34.890946 -0.571202 -0.684136 51.0 0.624475 0.389969 0.488460 -1.755041 -31.793698 -0.562911 -0.623406 51.0 0.690469 0.476747 0.304994 -1.560801 -34.411724 -0.565013 -0.674740 51.0 0.217068 0.047118 -0.464671 -1.342274 35.677319 0.577993 0.699555 51.0 0.625535 0.391294 1.662605 -0.328879 -34.656643 -0.496127 -0.679542 51.0 0.706674 0.499388 0.320454 -1.570962 -22.420255 -0.618588 -0.439613 51.0 0.440747 0.194258 0.470547 -1.150325 -34.909180 -0.577205 -0.684494 51.0 0.804206 0.646747 0.670274 -1.959881 -38.267212 -0.503481 -0.750338 51.0 0.813693 0.662097 0.490504 -1.814681 -38.217155 -0.602884 -0.749356 51.0 0.323900 0.104911 -0.414631 -1.582031 37.202102 0.617045 0.729453 51.0 0.739951 0.547528 1.986095 -0.486259 -35.451447 -0.374829 -0.695126 51.0 0.854458 0.730099 0.628421 -1.796660 -28.583450 -0.702296 -0.560460 51.0 0.482700 0.233000 0.552294 -1.458844 4.0
8 -37.221546 -0.704033 -0.729834 51.0 0.737737 0.544255 0.709278 -2.387635 -49.114784 -1.632605 -0.963035 51.0 0.893288 0.797964 0.625720 -1.738466 -42.148529 -0.789197 -0.826442 51.0 0.364045 0.132529 0.033324 -1.639284 39.506935 0.702783 0.774646 51.0 0.736887 0.543002 2.331514 -0.687143 -51.578213 -1.707612 -1.011338 51.0 0.878936 0.772528 0.655798 -1.767194 -30.958001 -0.663108 -0.607020 51.0 0.363462 0.132104 0.484722 -1.503030 -38.975426 -0.727765 -0.764224 51.0 0.187154 0.035026 -0.434912 -1.149907 -24.855530 -0.664124 -0.487363 51.0 0.242774 0.058939 0.013168 -0.712478 -12.185540 -0.152051 -0.238932 51.0 0.201546 0.040621 -0.076963 -0.740207 37.004498 0.642680 0.725578 51.0 0.204231 0.041710 1.185161 0.454508 -30.417671 -0.725361 -0.596425 51.0 0.208093 0.043303 -0.140892 -0.770591 -3.281179 0.000372 -0.064337 51.0 0.234173 0.054837 0.305370 -0.628432 -39.282730 -0.783600 -0.770250 51.0 0.525708 0.276369 0.378127 -1.808407 -40.044132 -1.292149 -0.785179 51.0 0.631058 0.398234 0.335704 -1.330300 -31.045876 -0.557992 -0.608743 51.0 0.226520 0.051311 -0.201011 -1.347596 38.689915 0.719858 0.758626 51.0 0.515307 0.265541 1.865181 -0.360475 -42.383713 -1.294223 -0.831053 51.0 0.589173 0.347125 0.261855 -1.400007 -19.460783 -0.369220 -0.381584 51.0 0.288380 0.083163 0.359176 -1.007585 -42.013736 -0.833883 -0.823799 51.0 0.608988 0.370867 0.433874 -2.403301 -44.656379 -1.350125 -0.875615 51.0 0.795833 0.633350 0.495625 -1.658140 -37.463715 -0.618286 -0.734583 51.0 0.335002 0.112227 -0.091560 -1.530195 37.702812 0.643129 0.739271 51.0 0.681370 0.464266 2.149762 -0.648830 -51.831993 -1.495859 -1.016314 51.0 0.746308 0.556975 0.454416 -1.740017 -28.965262 -0.586536 -0.567946 51.0 0.364034 0.132521 0.470018 -1.452238 4.0
9 -24.292154 -0.723827 -0.476317 51.0 0.701995 0.492797 0.633993 -1.616795 -74.903946 -1.739034 -1.468705 51.0 0.874647 0.765007 -0.283526 -2.461297 -58.185723 -1.010472 -1.140897 51.0 0.349332 0.122033 -0.764571 -1.996507 55.119583 0.883657 1.080776 51.0 0.379395 0.143940 1.931519 0.667815 -38.653057 -1.433481 -0.757903 51.0 1.465900 2.148863 1.174249 -2.271329 -39.732315 -0.775350 -0.779065 51.0 0.241241 0.058197 -0.321175 -1.294348 -36.798691 -0.705611 -0.721543 51.0 0.130146 0.016938 -0.506952 -0.942217 -34.612572 -0.681793 -0.678678 51.0 0.171086 0.029270 -0.312264 -0.868394 -19.718096 -0.343649 -0.386629 51.0 0.153238 0.023482 -0.211027 -0.667914 43.239754 0.782406 0.847838 51.0 0.123642 0.015287 1.135982 0.731697 -24.307549 -0.778194 -0.476619 51.0 0.507080 0.257130 0.460838 -0.902615 -18.462799 -0.210704 -0.362016 51.0 0.241684 0.058411 -0.126644 -0.759889 -30.686081 -0.755561 -0.601688 51.0 0.436531 0.190559 0.124602 -1.240271 -57.753544 -1.286138 -1.132422 51.0 0.535568 0.286833 -0.341215 -1.725427 -43.513134 -0.932897 -0.853199 51.0 0.219806 0.048315 -0.526928 -1.282452 50.507580 0.848892 0.990345 51.0 0.265001 0.070226 1.544412 0.719464 -31.098295 -1.147269 -0.609771 51.0 1.160387 1.346499 1.133501 -1.766298 -29.789145 -0.551675 -0.584101 51.0 0.143176 0.020499 -0.381935 -0.910881 -27.278313 -0.797646 -0.534869 51.0 0.636158 0.404698 0.430965 -1.549182 -70.921883 -1.650485 -1.390625 51.0 0.701938 0.492716 -0.426613 -2.219845 -49.757236 -0.831714 -0.975632 51.0 0.309763 0.095953 -0.612066 -1.783972 50.518131 0.874909 0.990552 51.0 0.390238 0.152286 1.873247 0.571731 -34.528259 -1.256407 -0.677025 51.0 1.277018 1.630776 1.000317 -2.027508 -39.304932 -0.779061 -0.770685 51.0 0.175208 0.030698 -0.456689 -1.218413 6.0
x_cat, x_cont, yb = first(dls.train)
x_cont
tensor([[ 0.2510, -1.0216,  0.2510,  ..., -0.8254, -1.2280, -0.4989],
        [ 2.8093,  2.8782,  2.8093,  ...,  1.1049,  0.1915, -1.3763],
        [-0.3896, -0.3842, -0.3896,  ..., -0.8492, -1.7897, -0.7025],
        ...,
        [-0.2363, -0.2105, -0.2363,  ..., -0.6975, -0.5374,  0.4494],
        [ 0.8455,  0.3421,  0.8455,  ..., -0.3739, -0.0638, -0.1428],
        [ 0.5340,  0.8307,  0.5340,  ...,  0.4782,  1.3826,  1.5660]])
from tsai.models.utils import *
from tsai.models.TabModel import *
model = build_tabular_model(TabModel, dls=dls)
learn = Learner(dls, model, metrics=[accuracy, RocAuc()])
learn.fit_one_cycle(5)
epoch train_loss valid_loss accuracy roc_auc_score time
0 1.806789 1.778912 0.216667 0.614370 00:00
1 1.781897 1.676545 0.422222 0.909481 00:00
2 1.733134 1.567385 0.533333 0.945778 00:00
3 1.678977 1.493117 0.566667 0.949370 00:00
4 1.632174 1.471912 0.577778 0.950074 00:00
b = first(dls.train)
model(*b[:-1]).shape
torch.Size([64, 6])