This is an unofficial PyTorch implementation by Ignacio Oguiza (oguiza@gmail.com) based on **Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917-963.** Official MLP TensorFlow implementation in https://github.com/hfawaz/dl-4-tsc/blob/master/classifiers/mlp.py
bs = 16
nvars = 3
seq_len = 128
c_out = 2
xb = torch.rand(bs, nvars, seq_len)
model = MLP(nvars, c_out, seq_len)
test_eq(model(xb).shape, (bs, c_out))
model