This is an unofficial PyTorch implementation by Ignacio Oguiza - timeseriesAI@gmail.com modified from:
xb = torch.rand(16, 3, 10)
test_eq(FCNPlus(3, 2)(xb).shape, [xb.shape[0], 2])
test_eq(FCNPlus(3, 2, coord=True, separable=True, act=Swish, residual=True)(xb).shape, [xb.shape[0], 2])
test_eq(nn.Sequential(*FCNPlus(3, 2).children())(xb).shape, [xb.shape[0], 2])
from tsai.models.utils import *
model = build_ts_model(FCNPlus, 2, 3)
model[-1]
from tsai.models.FCN import *
test_eq(total_params(FCN(3,2)), total_params(FCNPlus(3,2)))
FCNPlus(3,2)