A Very Fast (Almost) Deterministic Transform for Time Series Classification.
create_scripts
MiniRocketClassifier.__doc__
dsid = 'OliveOil'
fname = 'MiniRocketClassifier'
X_train, y_train, X_test, y_test = get_UCR_data(dsid)
cls = MiniRocketClassifier()
cls.fit(X_train, y_train)
cls.save(fname)
pred = cls.score(X_test, y_test)
del cls
cls = load_minirocket(fname)
test_eq(cls.score(X_test, y_test), pred)
dsid = 'NATOPS'
X_train, y_train, X_test, y_test = get_UCR_data(dsid)
cls = MiniRocketClassifier()
cls.fit(X_train, y_train)
cls.score(X_test, y_test)
dsid = 'NATOPS'
X_train, y_train, X_test, y_test = get_UCR_data(dsid)
cls = MiniRocketVotingClassifier(5)
cls.fit(X_train, y_train)
cls.score(X_test, y_test)
from sklearn.metrics import mean_squared_error
dsid = 'Covid3Month'
fname = 'MiniRocketRegressor'
X_train, y_train, X_test, y_test = get_Monash_data(dsid)
rmse_scorer = make_scorer(mean_squared_error, greater_is_better=False)
reg = MiniRocketRegressor(scoring=rmse_scorer)
reg.fit(X_train, y_train)
reg.save(fname)
del reg
reg = load_minirocket(fname)
y_pred = reg.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
rmse
from sklearn.metrics import mean_squared_error
dsid = 'AppliancesEnergy'
X_train, y_train, X_test, y_test = get_Monash_data(dsid)
rmse_scorer = make_scorer(mean_squared_error, greater_is_better=False)
reg = MiniRocketRegressor(scoring=rmse_scorer)
reg.fit(X_train, y_train)
reg.save(fname)
del reg
reg = load_minirocket(fname)
y_pred = reg.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
rmse
reg = MiniRocketVotingRegressor(5, scoring=rmse_scorer)
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
rmse = mean_squared_error(y_test, y_pred, squared=False)
rmse